

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

This thesis done in cooperation with the MOVES Institute

Approved for public release; distribution is unlimited

AGENT-BASED SOLDIER BEHAVIOR
IN DYNAMIC 3D VIRTUAL ENVIRONMENTS

by

David N. Back

March 2002

 Thesis Advisor: Michael Capps
 Second Reader: John Hiles

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Agent-based Soldier Behavior in Dynamic 3D Virtual
Environments
6. AUTHOR(S)
Back, David N.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPO NSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

ABSTRACT (maximum 200 words)

Human behavior in virtual environments is commonly implemented as a finite state machine. This programming approach can

be effective and challenging against human players, but its ability to realistically simulate the behavior of cooperative groups of

soldiers is limited. This thesis covers the development of an agent-based system to control the behavior of infantry in 3D

virtual environments. The system design divides the cognitive process into four modules: perception, mental model, goal

decision, and action resolution. Each module attempts to simulate both strengths and weaknesses of human perception and

cognition, including instinctive reactions, perceptual error, memory degradation, context -dependent decision-making, and

inference. Additionally, the soldiers are influenced by the actions and decisions of the agents around them, enabling

cooperation. The resultant agent system was incorporated into a game-like interface and compared to a similar commercial

game with standard AI. Overall, 72% of the test subjects thought that the agent behaviors were Mostly Realistic or Totally

Realistic, and 81% found them to be equal to or better than those in the commercial game.
15. NUMBER OF
PAGES

95

13. SUBJECT TERMS
Army Game Project, Artificial Intelligence, Human Behavior Modeling, 3D Virtual Environments

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

AGENT BASED SOLDIER BEHAVIOR

IN DYNAMIC 3D VIRTUAL ENVIRONMENTS

David N. Back
Lieutenant, United States Navy
B.A., Stanford University, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS, AND
SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL

March 2002

Author: David N. Back

Approved by: Michael Capps, Advisor

John Hiles, Second Reader

Rudy Darken, Academic Associate

 Modeling, Virtual Environments, and Simulation Group

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Human behavior in virtual environments is commonly implemented as a finite

state machine. This programming approach can be effective and challenging against

human players, but its ability to realistically simulate the behavior of cooperative groups

of soldiers is limited.

This thesis covers the development of an agent-based system to control the

behavior of infantry in 3D virtual environments. The system design divides the cognitive

process into four modules: perception, mental model, goal decision, and action

resolution. Each module attempts to simulate both strengths and weaknesses of human

perception and cognition, including instinctive reactions, perceptual error, memory

degradation, context-dependent decision-making, and inference. Additionally, the

soldiers are influenced by the actions and decisions of the agents around them, enabling

cooperation.

The resultant agent system was incorporated into a game-like interface and

compared to a similar commercial game with standard AI. Overall, 72% of the test

subjects thought that the agent behaviors were Mostly Realistic or Totally Realistic, and

81% found them to be equal to or better than those in the commercial game.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS STATEMENT...1
B. MOTIVATION ..1
C. PERCEPTUAL AND COGNITIVE IMPERFECTIONS............................3
D. AGGREGATE AND INDIVIDAL CONTROL..4
E. NON-DETERMINISTIC BEHAVIOR..4
F. FIDELITY ..5
G. GAME CONSTRAINTS ...6
H. GOALS AND METHODOLOGY..6
I. THESIS ORGANIZATION ..7

II. RELATED WORK AND BACKGROUND ..9
A. INTRODUCTION..9
B. MILITARY CONSTRUCTIVE SIMULATIONS......................................10
C. MILITARY TRAINING SIMULATIONS..10
D. COMPUTER GAME AI ...11
E. AGENT SYSTEMS..12
F. CONCLUSION ..14

III. ARCHITECTURE...17
A. INTRODUCTION..17
B. REQUIREMENTS...17
C. CONCEPTUAL DESIGN ...17

1. Perception...18
2. Mental Model..19
3. Goal Decision..21
4. Actions ...22

D. CONCLUSION ..23

IV. IMPLEMENTATION ...27
A. INTRODUCTION..27
B. THE UNREAL SYSTEM...27

1. General Description...27
2. Script Classes..29
3. Limitations ..30

C. AGP AGENT IMPLEMENTATION...31
1. Class InfoSource...32
2. Class MentalModel..33
3. Class Contact..34
4. Class AI_Stats ...35
5. Class GoalDecider..37
6. Class Goal ...37
7. Class Action..40
8. Class AgentController...41

 viii

D. CONCLUSION ..42

V. TESTING AND ANALYSIS ...43
A. INTRODUCTION..43
B. TESTING PHILOSOPHY..43

1. Subject Game Experience ...43
2. Subject Military Experience ...44
3. Game Presentation...44
4. Game Content ...44
5. Environment Design ..45
6. Control Game ...45
7. Survey..46

C. SUBJECT POOL ...47
1. NPS Student Body ..47
2. High School AJROTC ...47

D. EXPERIMENT PROTOCOL...48
1. Preparation...48
2. Introduction..48
3. Control Case...49
4. Test Case ...49
5. Survey..49

E. RESULTS ...50
1. Demographics ...50
2. Assessment of the AI ..50
3. General Results ..51

F. CONCLUSION ..54

VI. CONCLUSIONS AND FUTURE WORK...57
A. INTRODUCTION..57
B. INFORMATION FLOW...57
C. DECISION METHODS ..57
D. FUTURE WORK...58

1. Testing ...58
2. Code Optimization...59
3. AI-Sensitive Objects and Locations ...59
4. Class GoalOrders...60
5. Aggregation and Disaggregation ..60
6. Psychology...62
7. Friendly AI..62

E. CONCLUSION ..64

APPENDIX A...65
A. INTRODUCTION...65

APPENDIX B ...67
A. INTRODUCTION...67

LIST OF REFERENCES ..73

 ix

INITIAL DISTRIBUTION LIST...75

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. ISAAC Display and Statistical Output ..13
Figure 2. Four-Module AI Design ..18
Figure 3. Unreal Class Hierarchy ...28
Figure 4. Information - Decision - Action Loop...31
Figure 5. InfoSource ...32
Figure 6. MentalModel..33
Figure 7. Contact and AI_Stats..34
Figure 8. Sample AI_Stats for an Opposing Force Infantryman.........35
Figure 9. GoalDecider and Goals...37
Figure 10. Actions ...40
Figure 11. AgentController ...41

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Comparison of Existing Systems with AGP Requirements...........9
Table 2. Initial Design Goals ..25
Table 3. Implemented Goals ..39
Table 4. Implemented Actions ...40
Table 5. Survey Judgment Parameters ..51
Table 6. Subject Age Distribution ...52
Table 7. Subject Gender Distribution...52
Table 8. Subject FPS Gaming Frequency ...52
Table 9. Subject Army Career Likelihood ...52
Table 10. Subjective Ratings of AGP Realism ...53
Table 11. Relative Ratings of AGP Realism...53
Table 12. Realism Survey Results..72

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS

2D Two-dimensional

3D Three-dimensional

AI Artificial Intelligence

AGP Army Game Project

AJROTC Army Junior Reserve Officer Training Corps

CCTT Close Combat Tactical Trainer

FPS First-Person Shooter

FSM Finite State Machine

ISAAC Irreducible, Semi-Autonomous Adaptive Combat

ML Machine Learning

ModSAF Modular Semi-Automated Forces

OODA Observe, Orient, Decide, Act

OpFor Opposing Force

PC Personal Computer

SOAR State, Operator, and Result

TACAIR Tactical Aircraft

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

This thesis is dedicated to the Office of the Assistant Secretary of the Army for
Manpower and Reserve Affairs, who provided funding. Additional thanks go to:

• Dr. Michael Capps for supporting my rapid and unpredictable schedule during the last

months of the thesis.

• John Hiles for giving me my first taste of agent-based systems and inspiring my
interest in pursuing them for a thesis.

• Jesse McCree for putting in overtime to design a Return to Castle Wolfenstein level
so I could get my trial done on time.

• Evan Champlin for helping me during the trial in every way possible, allowing me to
do the work of many days in the time I had allotted (one day).

• Maj. Pugh, AJROTC instructor at Seaside High School, without whom I would not
have had a ready-made subject pool for my experiment.

Lastly, a very special thank you goes to my wife Angie, our daughter Isabella, and our
new baby Samantha who was born during the final throes of this thesis. I will have more
time with all of you now that this is done!

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. THESIS STATEMENT

Agent-based decision processes using imperfect perceptions and knowledge can

produce realistic soldier behaviors in a detailed, dynamic, three-dimensional virtual

environment.

B. MOTIVATION

In simple virtual worlds, the artificial intelligence (AI) can rival and even

outperform human players because it is capable of rapid searches of decision trees to

determine the appropriate reactions. In an 8 x 8 discrete chess environment with

relatively simple rules and perfect information, this approach can be very successful.

Even relatively inexpensive commercial chess programs can reliably defeat all but the

most skilled human players.

However, modeling human behavior in detailed, dynamic virtual environments is

much more complex, especially when dealing with groups of interacting individuals

rather than just one-on-one. There are a number of methods used to solve this problem,

the choice of which is largely dependent the purpose of the simulation.

Although there are a number of ways to reduce this complexity to a manageable

level, they are usually combinations of two elements: first, techniques that reduce the

number of options available at each decision point; and second, those which reduce the

number of decision points under consideration. Some methods for implementing the first

option include the use of heuristics to prune the decision tree and reducing the size of the

domain to decrease the number of available options. The second can be overcome by

limiting recursion depth for planning algorithms or increasing the complexity of scripted

actions so fewer decisions need to be made. Additionally, reducing the number of

independent characters that operate in the virtual environment can loosen both

constraints.

First-person-shooter (FPS) games use all of these methods to increase the speed

and precision of their AI calculations. They operate within fairly narrow domains,

limiting the number of possible interactions and perceptions to increase the depth with

2

which they can process them. They are commonly reactive, doing no searching or

prediction before choosing an action or series of actions. Additionally, they often use

‘spawning’, to simulate large numbers of independent characters while only having a

small number in the game at any time. Furthermore, the AI typically attempts to

challenge players by "cheating", giving the AI characters superior speed, accuracy, or

perceptions.

Some effort has been made to increase the depth and complexity of FPS game AI

programming, adding more academic AI techniques to improve the actual cognitive

performance of the game characters. One such system (Laird, 2000) even mimics

behaviors learned from expert human players. However, these techniques do not deal

with increasing the fidelity of the behaviors; they focus on finding optimal solutions to

movement and firing, using the best data and processes available to arrive at their

decisions to present the greatest threat to the players.

Providing a challenge for human players is not the only motivation in game

development. As virtual environments become richer and closer in representation to the

real world, players will expect entities that look like people to act like people as well. In

an environment where player-controlled and AI-controlled avatars mix freely

(EverQuest , Unreal Tournament , etc) and have identical graphical representations, it

becomes even more important that the AI act as realistically as possible.

In a training or simulation environment, the importance of this becomes

paramount. Training against (or with) an AI is only valuable if the AI acts and reacts in

the same way as the people with which the trainee is going to be working with in the real

world. The trivial way to solve this is to have players control all avatars in the virtual

environment, but this is usually impractical due to constraints on time, geographic

location, or politics; for example, real-world combat practice against the forces of a

hostile nation is unlikely outside of a state of war.

Thus, there are many situations where human-like behavior is at least as important

as intelligent (optimal) behavior. A further discussion of the requirements and

complications of humanlike behavior follows.

3

C. PERCEPTUAL AND COGNITIVE IMPERFECTIONS

Any effort to represent human behavior in a virtual environment requires a model

of the process of observing the world and synthesizing information. The model’s

decisions and actions can be explicitly scripted and unresponsive to the changing

environment. Alternately, the AI may be sensitive to all aspects of the virtual

environment and make all decisions in response to what it discovers. Most systems are a

combination of the two, responding to a subset of the state of the virtual environment

based on simulated senses, and reacting with a combination of planned and heuristically

scripted responses.

It is relatively simple to imbue virtual entities with unlimited knowledge of the

environment. While this can be used effectively to increase the challenge to a human

player in the context of a game, it is unlikely to be an accurate representation of ‘human’

behavior any more than incredible speed, damage resistance, perfect accuracy, or any

other trait that is beyond the abilities of models controlled by a human player. Thus,

some method of modeling the imperfect acquisition and retention of information about

the environment is required.

Having perfect environment knowledge gives an AI a significant advantage over a

human player who must use only the information provided by the interface. The effects

of imperfect field of view, aliasing effects, incomplete sound spatialization, and variable

rendering rates undercut the player’s ability to accurately perceive the virtual

environment. Most simulations offset this in part by providing additional on-screen cues

or sounds to indicate significant events or objects.

AI-controlled models hobbled to an equivalent level would put them at a

disadvantage because humans are adept at “filling in the blanks” when presented with

imperfect information. If the AI cannot make inferences about the environment that go

beyond what it directly perceives, it will be ineffective in simulating human behavior.

Furthermore, a human’s ability to use inference will effectively increase as the

environment’s fidelity increase; that is, as it becomes closer to a real-world environment,

the more pertinent the player’s background knowledge becomes. Thus, some method of

mimicking inference is necessary for the AI in the absence of actual cheating.

4

D. AGGREGATE AND INDIVIDAL CONTROL

Unlike the real world, it is perfectly reasonable for an AI system to have a global

entity that directly controls many of the virtual characters in a simulation. Such a scheme

reduces the strain on the system’s computing resources when compared to entity- level

control, allowing for more detailed group behavior and greater depth of planning. This

technique is common in military simulations that model the behavior of groups of

soldiers instead individually managing their actions and interactions. Such systems give

the designer explicit control of desired interactions between entities and groups, allowing

complex group behaviors learned and tested in real life to be modeled without having to

encode the behaviors and interactions required into each individual.

Alternatively, unscripted interactions between simpler entities can also be used to

produce complex behavior, as is shown by systems like ISAAC (Ilachinski, 1997).

Individually, such software agents have simple actions and behaviors, yet as a group they

display “emergent behaviors” that appear much more intelligent than the simple agent

structure would suggest. Although intriguing, it takes significant experimentation to

define the agent qualities required for a desired group behavior. More commonly, such

systems are used as virtual battlefields to gain insight into the gestalt effects of new

individual capabilities.

E. NON-DETERMINISTIC BEHAVIOR

The indeterminacy and complexity of human behavior is a problem for modelers.

Psychology has yet to produce a completely valid and tested model of real human

behavior, so there is little wonder that simulating it on a machine is problematic to an

even greater degree given the significant differences between human and computer

thought process.

One way that has been tried (Jones, 1999), often with great success, is to create a

list of rules and contingencies that is sufficiently long and complex that it cannot be

easily anticipated or predicted by a human observer. In practice this is quite difficult;

even for a discretized, finite-state game like chess. A supercomputer is required to beat a

human champion. In a situated simulation environment (like TACAIR-SOAR), the rule-

set must be much more complex to properly represent human behavior. Furthermore, a

5

complex environment and continuous time preclude any possibility of creating a

‘spanning set’ decision matrix which contains all possible actions at every possible

breakpoint, something that is possible in turn-based games like chess. Thus, the

designer’s notion of what actions are possible, likely, or beneficial will color the content

of the AI’s rule-set.

As might be guessed, more complex sets of rules and conditional checks greatly

increase the need for storage space and processor time to conduct the searches for the

appropriate behavior. This in turn increases the length of the decision cycle and

decreases the system’s ability to respond to rapidly changing environments.

Furthermore, it occupies processor resources that could otherwise be used for other

processor- intensive tasks (e.g. screen rendering, physics, collision-detection).

An obvious solution to this would be to introduce randomness into the decision

process to simulate the complexity that cannot be properly modeled. Careful design and

testing is required to ensure that the random factors cannot produce unrealistic results.

The AI must strike a balance between true deductive decision-making and subtle nudges

with pseudo-randomness.

F. FIDELITY

Realism, or model fidelity, is a high goal indeed, albeit one that is at present

limited by the technology available. Since the complete contents of a real-world

environment cannot presently be modeled, the designer has to choose a subset of the

possib le affectors and environmental cues to include in the simulation.

The problem domain drives the need for fidelity. For a game, realism is only

necessary insofar as it promotes enjoyment; a completely abstract game like Tetris only

requires the minimum level of fidelity to the physical phenomena it appears to be

modeling (falling geometric objects). As an environment becomes more like real life,

players will reasonably expect higher fidelity in the physics, biometrics, behaviors, and

other perceptible factors. For a training simulation, though, fidelity is absolutely required

for those environmental factors that would affect the trainee’s decision process.

This raises two very complicated problems: first, how to discover what

information is required; and second, how to represent it sufficiently that the human

6

players will respond appropriately. In a FPS environment, the main way that the entities

pass information is through their choice of actions and how these actions are presented to

the other entities and human players. Thus, which actions an AI chooses determine what

it does in the environment in addition to how the players see, understand, and react to it.

G. GAME CONSTRAINTS

Generating an agent system that mimics the human decision process would be an

admirable achievement in and of itself, but if it is not entertaining and easy to interact

with, it will not be used. This is doubly true of a FPS game environment. Since games

dominate the world of 3D situated virtual environments, and since many comparable AI

systems have been made in conjunction with games, it is natural to do AI

experimentation in a game environment (Adobbati, 2001). Experimentation with such

systems is also very practical for a number of reasons. They are designed to run on

personal computers, which are easily accessible and relatively inexpensive. Most FPS

games are designed to be easily modifiable, often including a scripting language simplify

changes to high- level behaviors without having to worry about the underlying mechanics

of the engine. Finally, using an existing game engine alleviates the need to design

physics, graphics, animation, memory management, and other necessary code before

starting the intended work on the AI and behaviors.

Nevertheless, use of an existing game engine imposes certain constraints on the

design of the AI. Some major points of a production game are fun, graphic interest, and

rendering speed. Making a game fun may be in direct conflict with making it realistic,

depending on the specific content of the game. High-end graphics and high frame rate

are both heavy consumers of processor time, reducing the amount that is left for the AI.

Therefore, using existing game development tools presents a trade-off between

their usefulness and the additional constraints they impose.

H. GOALS AND METHODOLOGY

The design goal of this system is to create an agent-based controller for Unreal

entities in the Army Game project that demonstrate believable humanlike actions and

decisions. This entails using the Unreal engine facilities and following the production

goals of the Army Game Project.

7

The project begins with a review of similar simulations and games to discover any

useful techniques which might be adapted directly into the AGP. Additional research

into agent systems will give the conceptual framework in which to design the AI for the

AGP soldiers. Concurrent study of the Unreal engine and the UnrealScript

programming language will lead to an understanding of the capabilities and limitations

inherent in the system. Then, an overall design of the information and decision flow will

result in a notional block-diagram of the required code modules and functions that will be

required. After the framework of the information-decision-action cycle is encoded, it will

be incrementally tested and expanded to increase the repertoire of behaviors and

circumstances it will support. Finally, the resultant system will be tested against a game

with traditional AI control to demonstrate the strengths and weaknesses of agent-base

design, and suggest directions for future development and research.

I. THESIS ORGANIZATION

The remainder of this thesis is organized as follows:

• Chapter II: Background. Research in various areas similar to the Army Game
Project, either through gaming, agent-related work, AI, or military simulation.
Description of existing and past research, which areas were complementary, and
which were inapplicable.

• Chapter III: Design. Describes the underlying methodology and structure of the
agent system, and discusses the decisions and trade-offs made to tailor the design to
the implementation and purpose of the AGP.

• Chapter IV: Implementation. Describes the basic structure of the Unreal engine
and the data structures on which it is built. Then details the modules created for this
thesis, how they interact with the underlying code, and how they implement the
decisions made in Chapter III.

• Chapter V: Experiment and Analysis. Experimental design for testing of the
system and analysis of how well it met its design goals. Conduct of the actual
experiment, and what results were derived.

• Chapter VI: Conclusions and Future Work. Discussion of the strong and weak
points of the system as currently implemented, and suggested directions for future
research and development.

8

THIS PAGE INTENTIONALLY LEFT BLANK

9

II. RELATED WORK AND BACKGROUND

This chapter presents an overview of several systems whose presentation or

content are similar to the Army Game Project. It discusses their similarities and

differences, and which of their methodologies or implementations are applicable to this

thesis.

A. INTRODUCTION

There is a broad range of systems attempting to simulate the behavior of the

modern soldier on the battlefield and display it. They can be broadly organized into four

categories, according to purpose. These are military constructive simulations, military

training simulations, game simulations, and agent simulations. In the case of games and

agent simulations, only those that work in the military domain will be considered.

For any of these to be useful for the purposes of this thesis, they must be scaled to

individual dismount infantry, use a graphical, 3D interface with a human player in real

time, and they must simulate the behavior of real soldiers. A system without one or more

of these aspects may still be useful from a conceptual standpoint, but it will not be an

answer to the basic problem.

Table 1 below summarizes how the categories of simulations compare to the

requirements of the Army Game Project. The remainder of this chapter discusses these

analyses and their consequences in further detail.

Metric AGP
Requirements

Military
Constructive

Sims

Military
Training

Sims

Games Agent
Systems

Time Real-time No Yes Yes No

Graphics 3D No Yes Yes No

Presentation First-person No Yes Yes No

Scale Entity-level No Yes Yes Yes

AI Behavior Realistic soldier Yes No Partial Partial

Control Individual No Yes* Yes No
* individual vehicles only; dismount infantry are typically handled in groups

Table 1. Comparison of Existing Systems with AGP Requirements

10

B. MILITARY CONSTRUCTIVE SIMULATIONS

Military Simulations are used extensively to predict possible outcomes for

conflicts on the battlefield. There are a number of simulations in current use by the U.S.

military, including ModSAF (Calder, 1993), Janus (Ramsey, 2002), and the under-

development Combat XXI project (Denny, 2001). All of are based on extensive real-

world data and research, so they are as true to reality as possible, within the constraints of

the simulation. Since they are used to model and predict the effects of real-world

warfare, model fidelity is of the utmost importance.

However, they are also typically of much larger scale than individual soldiers,

often not considering anything smaller than regimental scale; variations of Lanchester

equations (Taylor, 1980) are used to average out the behaviors of the large numbers of

troops within each atomic unit of military force. As such, the behaviors that they model

are not particularly applicable to individual soldier modeling, since the extreme and

abnormal behaviors that such equations ignore are of particular interest in a situated first-

person game. Furthermore, the interface with the human participant is typically a top-

down “god’s eye” view, instead of one situated within the simulated environment.

Usually these simulations run in an accelerated time-scale, since they are designed to run

many iterations of the same scenario as quickly as possible for statistical analysis of the

results.

Therefore, although they model human soldier behavior as accurately as possible

based on historical data, the differences in scale and presentation make such modeling

inapplicable to the AGP.

C. MILITARY TRAINING SIMULATIONS

Although there are numerous training simulations used by the military, there is

little reason to consider those used by the Air Force or Navy when considering

applicability to the AGP. The Army’s primary tactical training simulation is the Close

Combat Tactical Trainer (CCTT) (Foster, 2002), a system that links together numerous

cockpit mock-ups of tanks and armored vehicles with a realistic, first-person, real-time

virtual environment presented graphically through the cockpit windows. The

11

presentation is very similar to that of the AGP, although there is much more hardware

involved in correctly modeling all of the requisite systems and controls in a military

vehicle; the AGP assumes that the user will only have a keyboard and monitor for input

and output.

The scenarios, like the constructive simulations mentioned above, are designed to

be a realistic as possible, involving actual elements of the U.S. and foreign arsenals; their

physical and combat models are similarly as accurate to real life as possible.

However, CCTT suffers from generally poor or nonexistent AI. A crew of human

trainees runs each vehicle. Dismount infantry are controlled as squads rather than

individuals, and a console operator handles each squad. All forces must be controlled

directly by a human operator since there is no behavioral AI to allow opposing forces to

act with autonomy. As such, although very similar to the goals of the AGP, the CCTT

has very little to contribute to the formation of the AI module.

D. COMPUTER GAME AI

Existing game AI in the first-person-shooter genre is very promising. Various

games like Unreal, Quake, and Doom have had AI to control most of the opponents

characters in the game for many years, and they use the correct scale, time frame, and

presentation. The method in which game AI is accomplished deserves additional

description.

Nearly all modern games control their characters through a finite state machine

(Funge, 1999). Each character in the game is in a state that corresponds to some goal or

attitude (‘kill’, ‘run away’, etc). When in that state, their actions are programmed

through a sequence such as ‘find nearest enemy, point at it, shoot, repeat’. Transitions

from one goal to another are conditioned by queries to internal properties (e.g. health)

and external environment (e.g. surrounded, enemy has better weapons). Complexity is

achieved by refining the decision process for switching between states, improving the

behavior within each of the states, and increasing the number of states and thereby the

complexity of the logic to jump between them.

Generally, this approach yields reasonable results. As the code grows longer and

more detailed, it becomes more of a challenge for the human players who must oppose it.

12

Even so, in order to present a challenge, the computer players usually better aim, speed,

resistance to damage, or vastly superior numbers. When on completely equal terms, AI

only presents a challenge to human players in simple environments like chess.

Furthermore, the goal of challenging the players is often in opposition to realism, since

many advantageous behaviors in the game (e.g. spawn-camping, pickup-camping, using

explosives to jump farther) are only possible because of unrealistic aspects of the game

environment.

More importantly, the finite state structure is not as attractive as an agent system

(detailed below) for intuitive representation of the goal decision process, and it is

necessarily less flexible since all state transitions must be explicitly encoded into each

state. Nevertheless, the structure of a traditional game AI is important because the

underlying base of the Unreal engine is designed for this style of control. Whatever

solution is used, it must interface with the Unreal engine, and the higher level at which

this occurs, the less difficulty there will be in programming and integrating.

E. AGENT SYSTEMS

Agent systems are a growing specialty in the overall discipline of artificial

intelligence. Conceptually, such a system uses the interactions between numerous

independent software entities or “agents” to achieve complexity and emergent behaviors.

Behavioral emergence occurs when a group of agents produces an aggregate behavior

that was not explicitly encoded and usually was not expected by the designer. It is a

product of the numerous interactions between the agents, and has been shown to generate

apparently intelligent behavior even with relatively simple agent structure.

Agents are an extension of object-oriented programming. Objects have data and

methods that may be invoked by external callers. Agents add a layer of intent. Instead of

merely having their functions called, the agent responds to stimuli within the virtual

environment to decide which of its methods it wishes to use. Agents usually have limited

perceptions, restricting their information about the environment to a subset or

perturbation of the truth. The agent’s current goal is chosen by judging all possible goals

at each juncture according to an heuristic weighting function which takes the agent’s

perceptions of the environment and its own internal characteristics as arguments. When

13

selected, a goal then chooses and executes an appropriate action. When the results of the

action are perceived, an objective or fitness function then allows the agent to complete

the feedback loop and determine if its chosen actions have improved or harmed its overall

success in the simulation, thus allowing it to gradually modify its overall behavior in

favor of those actions that produce the best results.

Agent systems have been applied to numerous problem domains. In addition to

significant crossover with robotic control and machine learning (ML), agents have been

used for simulations of human organizations, predators and prey, and various sports and

games (Stone and Veloso, 2000). For example, a significant body of research has been

put towards creating teams of agents to play soccer on a virtual field using various

learning techniques to improve their abilities over time (Stone, 2000).

However, the seminal military-themed agent system was Andrew Ilachinski’s

ISAAC system. A proof-of-concept rather than a true simulation of battlefield behavior,

ISAAC pitted an army of blue squares against an army of red squares in a discretely-

gridded world, with each army attempting to capture the enemy’s flag (a specifically

marked grid for each side). Each agent was described by a vector of weights indicating

its propensity to move toward or away from each feature of the environment: friendly

agents, injured friendly agents, healthy and injured hostile agents, and each team’s flags.

During each time interval, each agent observed its perceptual world (a user-defined

number of squares around their own location). Based on its perceived environment and

its own personality, it decided which of the eight surrounding grid squares it would

attempt to occupy. Once all agents had decided on their actions, external rules

adjudicated conflicts and moved the agents appropriately.

Figure 1. ISAAC Display and Statistical Output (Ilachinski, 1999)

14

Although the design of the individual agents and the virtual environment was very

simple, when grouped together the agents performed unexpectedly complex behaviors;

frontal assaults, flanking maneuvers, delaying actions, and guerilla attacks were all noted

with various modifications to the team size, weight vector, sensing range, and weapon

range and effectiveness. None of these behaviors were explicitly coded into the agents,

nor did any single agent control the actions of any other.

More complex systems have followed ISAAC that increase or modify its

behaviors to simulate more complicated environments or behaviors (Ilachinski, 1999).

However, none of them to date has changed the fundamental 2D nature or essential

simplicity of the agent’s environment. Such systems do not tend to run in real time,

either because they are too abstract for real time to be a meaningful concept or because

they are designed to do as many runs in as little time as possible to gather statistical

results.

The strength of agent systems comes with the interactivity between large numbers

of fairly simple individuals. It would therefore be inappropriate (and fairly boring) for a

human player to directly control a single agent within the simulation. They would have

very few parameters to control, and they would not be able to influence the outcome of

the simulation directly, since they would not be able to exert control outside their single

agent.

On the whole, the goal decision process that agents use is an intriguing alternative

to the finite state structure described above. Because it directly involves the goals and

intentions of the agents as well as allowing interactions between groups of agents in a

cooperative action, it conceptually points to a similar approach in the more detailed

environment of the AGP.

F. CONCLUSION

None of the existing artificial intelligence technologies discussed will support the

combination of features needed for the AGP. However, the applicable elements of finite

state game AI and the more intuitive goal-action decision structure of agent systems are

both useful. The AGP design will incorporate many features of each, combining the

15

presentation method, 3D environment, and state-based actions of the Unreal engine

with the goal weighting and dynamic decision-making from agent systems.

Unfortunately, the military simulations had very little to offer, as their strengths

lie more with the accurate modeling of physical quantities and large group behaviors

rather than individual motivations and actions. Thus, despite having the same genre and

context as the AGP, they offer no significant source of inspiration for this project.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. ARCHITECTURE

A. INTRODUCTION

Chapters I and II alluded to many desirable characteristics for a system designed

to simulate individual and group soldier behavior for the Army Game Project. This

chapter presents the motivations, theory, and design of the AI module that will

accomplish this goal. The concepts and data structures included are, to the degree

possible, implementation- independent. The specifics of how they were adapted to the

Unreal engine will be discussed in Chapter IV.

B. REQUIREMENTS

Primarily, the AI module should produce humanlike behavior that is believable to

a naïve observer (such as a non-military person playing the game for the first time). A

more advanced goal would be to have it be convincing enough for subject-matter-experts

to accept the agents’ behaviors as natural. This is, of course, highly subjective, and thus

cannot be rated on any fixed scale. More detailed analysis of the ‘humanity’ of the AI

module is included in Chapter V.

In addition to this main goal, and in support of it, the module will have to run

quickly enough that it does not interfere with game play (rendering, user input and

feedback, etc) or ‘think’ too slowly to properly respond to changing conditions in the

virtual environment. Adjunct to this is that it be as memory-efficient as possible.

Overall, the design reflects a series of improvements to the information receipt

and processing of each soldier. As a whole, these alterations will improve the realism

with which the soldier interacts with its environment, especially with other soldiers (AI or

player-controlled).

C. CONCEPTUAL DESIGN

The basic structure of a system to control a virtual entity (a soldier in this case)

will have to generally follow the ‘perceive-decide-act’ paradigm (or as used by the Army,

‘observe-orient-decide-act’ or OODA). This model of information and decision flow

leads to a four-module design to interact with the virtual environment, as shown in the

figure below.

18

Figure 2. Four-Module AI Design

The following sections discuss each of these modules in further detail, especially

focusing on potential implementation decisions, problems, and possible solutions.

Interactions between the modules and between entities are also discussed.

1. Perception

There are several specific design goals for a perception module to make it mimic

(as much as is possible) the way in which a human player perceives the virtual

environment. This is necessarily difficult since in many ways it involves decisions about

what to limit; for example, a player can rarely perceive more than 45 degrees of

horizontal arc because of the limitations of a screen, whereas a virtual entity can perceive

as much of a visible arc as is desired. Should the AI be limited to the same perceptions as

a human, or should they have the same field of view as a human in the real world (around

180 degrees)?

19

Despite these ambiguities, there are certain design goals that are fairly

unarguable. The first of these is that the amount of information gained about a particular

object sighted ought to be dependent on the range and intervening cover. What this

dependence should be is subject to testing.

Furthermore, knowledge of an object should be particulated in such a way that

just ‘seeing’ or ‘hearing’ something does not immediately impart complete knowledge of

its nature. Partial knowledge is the natural way to allow for misconceptions and errors in

decision. This constraint will affect how the mental model is designed as well.

Additionally, a humanlike perception system will have to allow for error. Even if

partial information is missing, being able to rely on the details already gleaned about a

target greatly improve the AI’s chances as compared to a human player (who may

mistake enemy camouflage for friendly, for example). Some system of “spoofing” the

perception system, both inadvertent and deliberate, is necessary.

Finally, there should be some dispensation for reflexive behavior. Actions like

ducking in response to a surprise or loud noise are hardwired into the nervous system and

are not subject to decision or deliberation. Modeling these sorts of reactions should

provide an additional element of realism, since the players will have immediate feedback

that the AI is responding to their actions in an appropriate way. Since such reflexes occur

independently of the cognitive processes, it makes sense to implement them as a direct

connection between the perceptual module and the appropriate actions, bypassing the

goal decision process.

2. Mental Model

Human players base their decision on more than just the immediate perceptual

landscape. They have the advantage of a mental representation of the level, allowing

them to plan ambushes, escapes, resupplies, and other courses of action that are

impossible without knowing information outside of perceptual range. A complete mental

model of all entities seen or heard in the world would be the best answer, but likely

prohibitive in terms of memory and processor time required to support queries.

In an infantry-oriented game like the AGP, the soldiers exhibit the greatest degree

of dynamism and have the greatest impact on the course of the game. Therefore, the

20

highest priority is to keep track of where and when they were perceived, who they were,

and what they were doing.

Information is perishable, for two reasons. First, information like location,

velocity, and current goals are dynamic. Therefore, the mental model should degrade its

knowledge of properties not being directly observed to the status of a ‘guess’, making

them less reliable. In addition, memory is not perfect. Even static qualities like rank,

entity type, or alignment may not be perfectly recalled after some time has passed,

especially if there are numerous contacts stored in the mental model. It should be

possible to confuse memories and interpose one perceived being with another.

Inference is a difficult problem, but solving it (or at least simulating it) is

necessary for human behavior simulation. As an example, the mental model must be able

to see a single soldier and posit the existence of the rest of the squad, knowing that

soldiers tend to work and travel in groups. Inference should be more fallible than direct

observation, for obvious reasons, and should be dependent on prior knowledge of the

enemy’s order of battle and army structure. A more advanced goal would be to have the

AI learn about the structure of the enemy’s army (and correct mistakes in the

preconceived notions) based on observation, but this is probably beyond the scope of the

AGP considering that most AI-controlled soldiers will not persist for longer than a single

mission, certainly not long enough to make a complex learning system worthwhile.

The concept of confidence is a good way to address both the problem of inference

and perishability of information, as well as encoding various personality traits. While

distinct from the actual accuracy of a given piece of information, the mental model’s

confidence in that data can be used as a weighting factor on its influence. This produces

two kinds of errors, both of which are desirable. First, if insufficiently confident of a

piece of data that is nevertheless true, the AI may hesitate or fail to act appropriately

while waiting for new information, especially if operating under restrictive prior

assumptions (only to fire in self-defense, for example). Conversely, excessive confidence

in perceived or guessed data can lead to inappropriate actions (friendly fire, running away

from a single soldier thinking he is an entire squad, and so forth). While the capacity to

21

do these things will certainly not optimize the AI’s abilities, it will make them more

humanlike and open up a wider and more realistic range of tactics for players to use.

Finally, sharing of information between soldiers is a desirable goal. Without it,

coordinating actions between multiple soldiers requires absolute direction from a higher-

level entity. This may be appropriate under certain circumstances, but it is also in direct

contrast to the individualistic and agent-oriented design discussed so far. Unfortunately,

propagating information between soldiers will require additional processing overhead to

determine which soldiers are close enough to communicate and how much information

can be passed in a given amount of time. Thus, some simulation of information sharing

is likely to be more useable. Fortunately, the organizational structure of an infantry unit

lends itself well to removing some of the difficulties; the soldiers in a squad will

generally stay in close proximity, and are trained to communicate with each other. Thus,

is may be reasonable to remove communication entirely and assume that all soldiers in a

fire team or squad have access to the same information. Their reactions to this

information will still vary because they must relate it to their individual location,

condition, and tactical situation before deciding on an appropriate goal.

3. Goal Decision

Once there is a picture of the environment, the AI can make decisions about what

it wants to do. Soldiers will always have a number of conflicting interests. In addition to

the fundamental desire to avoid death, they should also be motivated to attack the enemy,

follow the orders given by their superiors, stay with their squad, and accomplish their

overall mission. Special circumstances will extend this list; patrolling an area, looking

for enemies, defending friends or certain locations, or just waiting for something to

happen are all appropriate at certain times.

The combination of the soldier’s state and their knowledge of the environment

will lead to such a decision. In the spirit of agent systems, this decision should be

designed as a weighted comparison between all of the possibilities available at each

juncture rather than a pre-scripted jump from one state to another. This should increase

the flexibility of the system and allow intuitive encoding of the AI’s mental and

emotional state rather than having to distribute it throughout the structure of the state-

22

machine. This should permit easier configuration of the attributes of individual soldiers

(bravery, aggressiveness, overconfidence, laziness, caution) to create a wide diversity of

individual behaviors from a fairly small set of properties and capabilities.

Most goals fall into two fundamental categories. First are the orders, things that

the AI decides to do because its ‘leader’ has told it to do so. These can exist at many

levels, including direct commands from a squad leader, standing orders, and

interpretations of commander’s intent. These can be given various weights that allow one

to pick up when another becomes impossible or unclear.

However, in order to simulate human behavior there, the soldier must be able to

act instinctively in times of stress. Therefore, there should be another level of behaviors

that are responses to external stimuli; threats, perceived vulnerabilities, curiosity,

laziness, and so forth. When instinctive motivations are greater than their motivation to

obey their current command, they should break discipline and act individually.

4. Actions

Goals are fairly broad representations of the AI’s attitude toward the world and

their immediate environment. Once a goal is made active, the AI needs to figure out

which specific actions are appropriate to accomplish this goal.

A discrete and countable list of all possible actions is possible due to the

necessary limitations of the interface with the chosen virtual environment. However, an

intelligently chosen subset of combinations of these elemental actions should suffice to

give the agents flexibility enough to deal with the world. There are two main trade-offs

involved here.

The first concern is the number of possible actions. A long list would give greater

flexibility and the designer would be able to encode more specific combinations of

actions that are appropriate to the simulation. However, a larger set of actions requires a

more detailed algorithm for deciding which one to use, which in turn requires a more

detailed virtual environment on which to base the determination. Furthermore, as the

complexity of the set increases, it becomes increasingly likely that certain actions will

dominate others due to slight dissimilarities in their weighting schemes, in which case the

marginalized actions might as well be absent. This problem can be partly abstracted

23

away through judicious use of random numbers, selecting between otherwise equally

applicable actions.

A shorter list of actions for each goal makes programming and debugging far

easier, and allows the virtual environment to be simpler. Therefore, reactions are more

robust and quicker. This has its own problems though; a short list of possible actions

may become predictable, especially since humans are adept at noticing patterns.

Ultimately, this could violate the design goals of the project, since humanlike behavior

should not seem deterministic.

The second decision is how complex each action should be. Short, concise

actions (e.g. ‘shoot designated enemy’, ‘move forward’, ‘crouch’) are easily and quickly

accomplished, and it is difficult to interrupt them. They are essentially one step above

directly manipulating the engine and animations. However, because of their simplicity

they do not individually have much chance of accomplishing a goal. Additionally, short

actions require frequent reassessments to determine what to do next. If the AI runs

quickly, this may not present a problem and will give the system an opportunity to

respond more quickly to changing circumstances. If the AI gets bogged down then the

added overhead of frequent reassessment may lead to an unforgivable performance hit

and produce delays or stutters in the soldiers’ actions.

More complex actions, on the other hand, give the designer the ability to script

more complex tactics which would be unlikely to arise from the reweighting scheme,

especially those that involve cooperation with other soldiers. As an example, a trained

Special Forces team might know an “Australian Peel” maneuver where one soldier covers

the rest until he is the last in line, then he retreats while the next soldier covers him. It is

unlikely that such a specific tactic could result from primitive actions and reweighting,

which is appropriate because real soldiers would have to learn it through repeated

practice rather than discovering it on the battlefield.

D. CONCLUSION

The design of the AI system is necessarily incremental, and will continue long

after this thesis is complete. The first priority is to create a functional AI that produces

simple, believable behavior and provides a proof-of-concept for the information /

24

decision loop described above. Once this is accomplished, additional complexity will be

added. Because the design is modular, new perception modes, mental model parameters,

goals, and actions can be added on after the initial design with limited interference with

the existing structures.

Table 2 gives a summary of the initial implementation goals fo r this thesis.

Chapter VI will discuss avenues of future work to improve and refine the system.

25

Module Initial Design Goals

Perception • Simulation of sight and hearing

• Human field of view (approximately 180 degrees
horizontal)

• Quantity of information gained dependent on time and
range

• False information gain possible

• Interactivity with mental model

• Simulation of reflexive actions

Mental Model • Representations of other soldiers in the environment

• Knowledge divided into individual traits

• Knowledge is lost over time

• Simulation of inference for simple traits (e.g. location)

• Representation of confidence in known traits

• Shared mental model by fire team or squad

Decision • List of “instinctive” goals

• Algorithm for assigning weights to each goal

• Actions associated with each goal

• Algorithm for choosing appropriate action to accomplish
goal

• Scheme for timely reweighting when the situation
changes

Action • Short list of actions

• Medium complexity of actions

• Most actions applicable to more than one goal

• Feedback to calling goal when action is ineffective

Table 2. Initial Design Goals

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

IV. IMPLEMENTATION

A. INTRODUCTION

Adapting the design goals described in Chapter III required extensive

modifications to the existing Unreal AI system, introducing a number of new modules in

place of the single Bot module used previously. The overall goal was to create an agent

system to control individual soldiers and to share information between them. At the same

time, due to the constraints on memory, processor time, and programming timeframe,

acceptable concessions were made provided they did not have a significant effect on the

operation of the system.

The remainder of this chapter discusses the Unreal system as it is currently

implemented, gives an overview of the additional AI code written for the AGP, and

makes some conclusions about the process. Direct quoting of computer code and

references to programming language keywords are signified with a font change, as in

class MentalModel.

B. THE UNREAL SYSTEM

1. General Description

The Unreal engine exists on two levels. First, there is the underlying code base,

written in C++. These modules provide for the fast manipulation of processor- intensive

elements of the virtual environment: rendering, raytracing, collision, textures, animation,

networking, and other areas that must be done quickly to be done well.

The upper level of the code is in a format called UnrealScript . This is a

programming language created entirely to interface with the Unreal code base. It has

many commands and control structures specific to the engine in addition to constructs

and operators normally available to a programming language. It communicates with the

C++ code base in two ways. First, script functions can be written to be triggered by

predefined events generated by the code base. Conversely, script can be made native,

which leaves the variables and function headers in the script, but requires the

implementation to be written in C++. This allows script entities to directly call functions

in the quicker compiled code.

28

The normal mode of script execution is a read-decode-execute interpretation done

in real time. This is considerably slower than compiled code, as might be expected.

Each line of script takes roughly 100ms to execute, regardless of its contents. This makes

brute-force searches and time-stepped code more problematic.

UnrealScript is a very strongly typed language, with limited and sometimes

prohibited type recasting. For example, a variable of type enum cannot be recast as a

byte (its underlying type) to be used in a generic function that might take several different

types of enumerated values. This makes code abstraction and extension more difficult;

multiple functions that do essentially the same thing must be written instead of a single

multipurpose function, and adding types must also include adding functions to handle

them.

Despite these problems, UnrealScript is a powerful language for dealing with the

Unreal Engine, and has built- in abstractions for many functions that would be intensive

and difficult to program at the C++ level.

The next section will discuss the base classes and constructs in Unreal and how

they behave and interact.

Figure 3. Unreal Class Hierarchy

29

2. Script Classes

Everything in an Unreal world is built from script classes. The most primitive of

these is the Object. Objects have very limited functionality, and since they do not

have any location or appearance they cannot be instantiated in the same way as higher-

level classes. Furthermore, they do not interface with the game clock, so it is difficult to

manipulate them in timed or periodic ways. Because of these limitations, none of this

thesis work was done with Objects, despite the relatively low overhead involved.

Actor is a subclass of Object, and adds significant functionality. It has

location and velocity as well as an interface to the game clock. Actors have a large

overhead, much of which is redundant for AI constructs that are contained within larger

game entities like soldiers. For example, the physical location of a Controller is

always the same as that of the soldier it directs, so storing it independently is

unnecessary. However, a dependency on the added functionality of Actors required

their use for most of the AI classes, despite the Object’s smaller memory requirement.

Pawns represent everything in the world that can be controlled by a player or AI

module. All avatars in the game are represented by Pawns; all other active parts of the

world (guns, doors, etc) are Actors. All Pawns have a Controller (which tells them

what to do) and an Inventory (which tells what they possess) in addition to various

physical properties which define how they interact with the world (collision volume,

physics information, eye-height, etc). A subclass of Pawn is used to represent all people

in the Army Game Project, including soldiers.

Controllers are the subclass of Actor that governs how Pawns actively

interact with the environment. Controllers interface with the underlying code to do

appropriate animations and update physical characteristics when so directed.

Controllers also receive all perception events and handle them appropriately, which

is significant for AI purposes.

Controllers are further subclassed into HumanControllers and

AIControllers. HumanControllers take inputs from user devices (keyboard,

mouse, joystick) to decide which actions to call; AIControllers have default no

30

functionality but provide a basis for the control struc tures of a Bot, which is the

AIControllers used for existing Unreal applications (deathmatch, capture the flag,

and so forth). Bots are state machines as discussed in Chapter 2. UnrealScript

requires that a Bot only be in one state at a time.

3. Limitations

There are a number of limitations to the existing system that make it inappropriate

for the goals of this thesis. First, perception is a Boolean quantity; something is either

perceived completely or not at all. Hearing does allow for a loudness parameter to be

passed with the perception event, usually for presentation to a human player through

the headphones or speakers. Sight is based on raytracing between the perceiver and the

target, using several rays to ensure that partially occluded targets can still be seen.

Second, the control is almost completely reactive. Its decisions are almost

completely determined by its immediate perceptual environment, with no planning and

little memory of previous entities or events to guide it. When tracking an opponent

beyond line of sight, for example, all it knows is the last place where they were seen.

Third, decisions are entirely state-dependent, and therefore nearly deterministic

(in a certain state, the Pawn will decide to do a certain thing without fail). Each state

consists of a long block of complex branching code controlling how the Controller

acts and responds to perception events. There is no ability to adapt or alter its tactics in

situations not anticipated by the designers. Non-determinism is only created by the

interactions between multiple Bots and the asynchronous nature of interaction between

the Bots and human players, along with a moderate dependence on random numbers for

weapon accuracy and state selection.

Fourth, Bots are designed to be rational. Since the goal of most games is to give

the players a challenge, it is not particularly meaningful to make the Bots choose “bad”

goals or actions. Although they are hampered in some ways (giving them less than

perfect accuracy, for example), they always choose the best state that the designers could

anticipate for their situation. In a reality-based game where the Bots are designed to

31

mimic real people, this is inappropriate; morale failures, confusion, and bad tactical

choices need to be within the realm of possibility.

The design of the AGP AI module deals with each of these areas of deficiency in

a way that allows for more ‘human-like’ behavior, including limited and imperfect

perception, memory (and forgetting), inference, non-deterministic behavior, sharing of

information, and cooperative goals.

C. AGP AGENT IMPLEMENTATION

Figure 4. Information - Decision - Action Loop

In keeping with the guidelines described in Chapter III and the options and

restrictions imposed by the structure of the Unreal system, the AGP AI module has the

following components:

32

Figure 5. InfoSource

1. Class InfoSource

Since the Controller catches seePlayer, seeMonster, and hearNoise events, it

was necessary to package these events and send them to my own Class for proper

processing. With a slight modification to the AgentController already being used,

all perception events were passed into the AGP_Pawn’s InfoSource along with the

type of perception and its intensity (if appropriate). The InfoSource then called the

MentalModel’s receiveInfo method to dump the relevant information into the

mental model.

After some consideration and testing, it became apparent that it was appropriate to

hard-wire certain reactions directly into certain stimuli. Actions that are done without

thought, such as ducking when presented with a loud, unexpected noise, are inappropriate

to handle through a goal-decision process, as they must be done quickly and

automatically. Therefore, when the InfoSource registers a hearNoise event above a

certain threshold (affected by both the loudness of the noise and the relative calmness of

the environment), it will directly trigger the AgentController to duck or go prone.

Once the Pawn is in a stressful situation, the noises of gunfire (for example) will no

longer be loud enough to cross the higher threshold, allowing the agent to act normally.

33

Figure 6. MentalModel

2. Class MentalModel

The MentalModel is the repository for all information about the environment

known by a particular agent. It contains an array of Contacts (see below) that it

updates when it receives perception calls from the InfoSource and queries when

asked about one of them.

Optimally, each soldier should have its own MentalModel; however, this

would require significant memory and processing time. Furthermore, since soldiers

travel in units that are typically in sight and hearing of each other, there would be a large

amount of replication; that is, more than one soldier would have essentially identical

models of the world. Additionally, since these soldiers would be in close proximity for

most of any given mission, there would be a large amount of traffic needed to

communicate information between them. To solve these problems, soldiers in a squad

share a MentalModel. Each soldier has their own InfoSource which links to the

model, but as long as they all stay part of the same squad, they enjoy continuous and

perfect contact with their fellows.

MentalModels also have several utility methods to compute useful quantities

about the environment. They may be called to assess how much threat a particular

Contact presents to the caller, and the overall assessment of all threats combined.

Conversely, it may also provide a calculation of how vulnerable a particular Contact is

to the caller and therefore how attractive a target it makes.

34

Figure 7. Contact and AI_Stats

3. Class Contact

A Contact is a representation of a single entity in the MentalModel.

Contacts do not contain entity information themselves; instead they store a pointer to

the AI_Stats (see below) of the entity in question and an abstract infoLevel that

rates how much the caller knows about the Contact on a continuous scale from 0.0 to

1.0. The infoLevel is further divided into static and dynamic; staticInfoLevel

does not decrease over time, and is used when accessing traits that are relatively

unchangeable, like alignment (friend or foe) and entity type (infantry, civilian).

DynamicInfoLevel, on the other hand, rates the caller’s knowledge of the

entity’s current characteristics that change over time: position, velocity, condition,

current goal, and so forth. This decreases over time at a fixed rate. This method of

degradation is a compromise between the losses of information due to actually forgetting

what was seen and heard and those due to the actual parameters changing. The

MentalModel continuously updates the infoLevels as long as the Contact is in

sight, so these do not come into effect until a wall or terrain feature occludes it. After

this, the MentalModel still knows the location of the target, simulating its ability to

infer or guess where someone will go right after they duck out of sight. After a certain

amount of time, the dynamicInfoLevel degrades to zero and the MentalModel

can access no information about the Contact’s dynamic qualities.

35

4. Class AI_Stats

The goal of the AI_Stats class was to create a single module to contain all AI-

relevant information about any type of Actor in the virtual environment. To accomplish

this, an AI_Stats does not have any predefined attributes. Instead, it holds arrays for

information with floating point, enumerated, or vector values, and supports methods that

allow new characteristics to be added, stored, and updated as needed. Thus, the same

AI_Stats class can support an enemy soldier or an M16A2 rifle, even though their

meaningful quantities are completely different.

Figure 8. Sample AI_Stats for an Opposing Force Infantryman

Each characteristic is stored as either dynamic or static. This is initialized with

the stat and indicates whether or not its value will change. Static quantities are assigned

upon creation and left. Dynamic quantities are more problematic; in UnrealScript there

is no way to create pointer to a primitive-typed value, nor is there a way to dynamically

associate a function call with the stat to retrieve the source value elsewhere in the system.

There are two ways to handle this problem. The first is to find all conditions under which

the desired value changes and add a call to the AI_Stats to update its value as well.

This is the best solution since it guarantees that the AI_Stats will give the correct

value whenever it is called. For most variables, however, it is inappropriate or

impossible, either because they are changed in many places in code or because the engine

directly manipulates them, outside of script. For these stats it is necessary to set up a

timer to update the AI_Stats value periodically. This is less efficient and uses up extra

36

processing time, but is necessary for certain stats like location and velocity. Fortunately,

most stats are either entirely internal to the AI, static, or both.

AI_Stats is further subclassed into AI_ObjectiveStats. The principal

addition is that AI_ObjectiveStats are automatically placed as a Contact in all

MentalModels when the game begins. This is to represent objects in the virtual

environment whose location would be known to everyone, like buildings or bridges.

The AI_Stats interfaces with the Contact using the infoLevels as

described above. The infoLevel passed to the AI_Stats determines whether it

returns the actual value desired, a predefined value indicating “unknown”, or a

misleading value. Currently, the code only supports a single spoof value, although future

work might include multiple, dynamically assigned, or randomized spoofs. The inclusion

of spoof values ensures that spurious values can be introduced into the decision process,

and therefore lead to inappropriate decisions.

One shortcoming of this approach is that there is no persistence of information;

with the infoLevel going up and down over time, it is quite possible to request the

value of a stat twice in sequence and get two different return values. Fortunately, the

boundary cases where this occurs should be both rare and transparent. InfoLevel will,

in general, be increasing (with continuous perception events) or decreasing (through

forgetfulness, and only for dynamic stats). Therefore, there should be only one conflict

between function calls in any short period of time as the infoLevel crosses the

threshold. Since the information is being pulled from other modules rather than pushed

steadily from the MentalModel, it is unlikely that such an event would occur. Even if

it did, it is not unlike suddenly coming to a conclusion after being initially unsure about

what was seen. Since the returned values are not shifting back and forth rapidly, they

should not lead to a thrashing situation in the goal decision process.

37

Figure 9. GoalDecider and Goals

5. Class GoalDecider

Although this class is the heart of the agent architecture, it consists of only a

simple goal-delegating authority. When it is created, it has a number of Goals added to

it, representing the motivations that the agent will pursue in the virtual environment. As

described below, each Goal must know how to weight itself based on the state of the

virtual environment (as known through the MentalModel) and the state of the agent

itself. It must also know how to execute itself and know when it is complete or has been

interrupted. Since the Goals contain all of this information, all the GoalDecider

must do to reweight them is to ask each one their weight and pick the highest. Then,

when the Goal is complete or interrupted, it asks the GoalDecider to reweight itself,

starting the process over.

Of course the environment will produce situations where it is appropriate for the

GoalDecider to reweight before it has finished with its current Goal. For this reason,

the MentalModel forces a reweight for all of its members whenever a new Contact

appears, or when a Contact reappears after being hidden for a period of time. Thus,

the GoalDecider should never be caught executing an old Goal after it has gained

new information.

6. Class Goal

Goals are similar to the GoalDecider in structure. Each has a number of

associated Actions, each of which can rate its effectiveness under the current

circumstances. When activated, the Goal asks each of its Actions to weight

themselves, and then executes the one with the highest weight.

38

As with the GoalDecider, when an Action is complete or is interrupted, it

notifies the Goal so it can pass execution back to the GoalDecider for a reweight.

Not all agents need to know about all Goals when the game begins. Because

Goals can be assembled and added to the GoalDecider’s list dynamically during

play, a leader could know or learn of a mission and then pass it down to his subordinates

as the results of some other event in the game. Goals may also be generated entirely

separate from any agent in the game and ‘discovered’ based on specific events (e.g. radio

communications from HQ, or finding a piece of intelligence).

Table 3 shows the Goals that are currently implemented, and their general use.

39

Goal Description Associated Actions

GoalAttrit Move to and attack targets of
opportunity.

ActionAttack
ActionFixJam
ActionReload
ActionMoveTo
ActionAdjustInv
ActionRecovery

ActionIdle
GoalDefend Move towards specified

objective and defend it from
enemy forces. May be used
either defensively or
offensively, depending on
whether the soldier is currently
in control of the objective.

ActionAttack

ActionFixJam
ActionReload
ActionMoveTo
ActionIdle

GoalImprove Improving personal state
through by resting, reloading
ammunition, unjamming
weapons, or just looking
around.

ActionFixJam
ActionReload
ActionAdjustInv
ActionRecovery
ActionIdle

GoalSurvive Take cover, avoid or run away
from threats.

ActionTakeCover
ActionFlee
ActionFixJam

ActionReload
ActionIdle

Table 3. Implemented Goals

40

Figure 10. Actions

7. Class Action

Actions interface with the existing finite state machine structure in the

AgentController. All Actions know how to weight themselves, as with Goals,

and what state to activate in the AgentController when they are executed.

Actions also register themselves with the AgentController when they become

active so it knows where to return the notification of completion or interruption. The

Actions then notify their parent Goal.

A listing of the currently implemented Actions is given below.

Action Description

ActionAdjustInv Switch to a more effective weapon.

ActionAttack Turn towards enemy and fire weapon.

ActionFixJam Unjam a jammed weapon.

ActionFlee Run to the nearby location that combines closeness, cover and
maximum distance from the current threat.

ActionIdle Stand in place and look around for enemies.

ActionRecovery Move to and retrieve weapons and ammunition.

ActionReload Reload an empty weapon.

ActionTakeCover Drop to a crouched or prone state.

Table 4. Implemented Actions

41

Figure 11. AgentController

8. Class AgentController

The AgentController is very similar to the Bot class in the default Unreal

AI, as described in the first part of this chapter. In the AGP, all AgentController

states directly correspond to one of the Actions. When executed, the Action tells the

AgentController to enter the appropriate state and begin execution. The state code

determines what to do and calls the appropriate functions to actually move, turn, fire

weapons, trigger animations, and all other effects within the virtual environment. If the

AgentController enters another state without properly completing the one it is

currently in, it returns a message to the original Action that it was interrupted;

otherwise, it completes the state code, tells the Action that it was completed

successfully, and waits for the next jump to a new state.

The implementation within each state is highly variable. Some Actions are

fairly atomic. For example, reloading the weapon is a single function call to the engine,

and is only applicable when the weapon is empty and a Goal that cares about the

weapon state is active. At the other extreme, the MovementTo state makes numerous

decisions about choosing a path to follow, turning, and triggering appropriate animations.

Firing a weapon is also complicating, requiring a check for uninterrupted line of sight,

range to target, and weapon status before turning to face the target. When all conditions

are met, it can then tell the weapon to trigger the animations and physics checks.

42

D. CONCLUSION

Overall, the goal of the agent-system AI is to enable the soldiers to perceive their

environment, remember and process its vital aspects, and make weighted decisions about

what to do in real time. Additionally, soldiers need to share information and have some

facility to be misled by imperfect or incomplete information. At the same time, it is

desirable to reuse as much code as possible from the existing Bot implementation.

The implementation described above fulfills all of these goals; some areas, like

the goal decision process, are closely in accordance with the guidelines of designing an

agent system. Others, such as the shared mental model, are concessions made to the

realities of real-time processing and the need for acceptable decision and graphics refresh

rate. Despite these compromises, the effect appears to be indistinguishable from

individual soldiers having their own mental models, at least in the test cases conducted in

the lab so far. Chapter V will discuss the testing used to determine whether the design

goals were met for the intended audience.

43

V. TESTING AND ANALYSIS

A. INTRODUCTION

This chapter describes the subject testing of the AI system developed in this

thesis. First, it discusses the conceptual framework and goals of the testing process, and

then the test protocol and the results obtained. The survey data are presented concisely to

demonstrate the experiment’s outcome. Finally, the conclusion discusses some avenues

of improvement based on the survey results.

B. TESTING PHILOSOPHY

The overall design goal of this thesis is to produce behavior more consistent with

a hierarchical, cooperative military organization than the game AI used in commercial

and academic systems. Underpinning this goal is a need for general improvement in the

fidelity with which human behavior is modeled in such systems. If the individual

soldiers do not act like real human beings (as opposed to human players in an FPS game),

there is little hope that a group of them will behave realistically, much less like a time of

soldiers.

There are a number of factors that have some bearing on the test subjects’ ability

to gauge humanlike and soldierlike behavior, and these will be taken into consideration

for the experimental design.

1. Subject Game Experience

Familiarity with FPS games will most likely have a significant impact on the

subject’s perception of the agents’ behavior. Those with the most experience with this

sort of game will need to expend less attentional resources on the basics of game

interaction and thus should be able to pick up finer details of what is going on in the

game itself. Additionally, familiarity with traditional FPS games will also condition their

expectations of AI behavior, thus making any differences in the AGP sys tem more

apparent.

44

2. Subject Military Experience

Presumably, the subject’s degree of military experience will determine the level

of fidelity necessary to convince them that the agents are thinking and acting in an

appropriate way. A given user might have any degree of experience, from complete

novices to senior infantry officers with combat experience. It is likely that inexperienced

subjects will miss behavioral inaccuracies that a veteran would find jarring and unnatural.

3. Game Presentation

Since the AGP is designed to be run on standard PCs, its interface and

presentation are limited to a keyboard and monitor. Monitors have two main limitations

that may affect the subjects’ ability to pick out the agent behaviors. First, their field of

view is fairly limited, typically around 30-45 degrees total viewable arc in the virtual

world. This makes it difficult to see a full picture of the world and specifically the

soldiers in it. When the player is approaching a group from a distance, they may be able

to see all of the enemy agents, but once they are surrounded or involved in the action,

they may miss important events that happen within their (human) perceptual envelope,

but outside that of the monitor.

Similarly, the speaker systems presenting game sounds are usually fixed to the

monitor or on either side. Audio spatialization is essentially non-existent, and thus the

players’ ability to respond properly to sound events is hindered. It is not clear whether

this limitation makes proper assessment of the agents more difficult.

4. Game Content

The trial kept to games with the most realistic content possible: only human

characters, and real modern weapons and uniforms. The depiction of game characters

was as realistic as possible, with appropriate animations, blending, shading, and sound

effects to generate a proper environment. This aided in evaluating the AI, since it was

less likely that players would be distracted or misled by the novelty of a fantastic or

science-fiction setting. Additionally, the higher the presentational fidelity, the more an

observer expects other aspects, like behavior, to be correct as well. Since correct

behavior is the goal of this thesis, this was a good expectation for the subjects to have.

45

Nevertheless, there are a finite number of discrete states and actions that a game

character can perform, and therefore some desired actions may be impossible. For

example, it may be reasonable in real life that a soldier crouch down behind a wall so that

just their weapon and the top of their head are over the top, to maximize cover while

retaining the ability to see and shoot. In the game, the wall would have to be exactly the

proper height in order to support this; if it were taller than the standard crouch height, it

would occlude the weapon and the eyes; if it were too short, more of the soldier would be

visible.

Situations like this present difficulties in two ways. First, the players may be

distracted by their inability to perform common-sense actions due to the constraints of the

game and interface. This distraction takes attention away from the true content of the

game, which may in turn hinder a proper assessment. Second, when the players see the

AI-controlled characters taking cover behind walls (to use the example above), they

believe that the soldiers are doing something incorrect rather than perceiving the

limitations of the engine’s ability to represent physical actions and positions. As such,

they might ascribe seemingly odd or illogical behavior to the AI rather than to the

underlying engine that governs its interactions with the virtual environment.

5. Environment Design

In addition to the functionality of the game engine itself, the design of the

environment is vital to the ability to demonstrate behavioral qualities of the agents. The

first concern is that the agents’ actions be apparent to the characters through as much of

the trial as possible, without making it too easy to kill them or die. This argues for an

open space (as opposed to one set indoors) with prevalent hard cover so that observation

is possible without being shot. Nevertheless, there should be significant risk and room to

maneuver so the agents (and the player) can explore various tactical situations and evoke

the full range of behavior from the agents.

6. Control Game

In order to demonstrate a difference from existing, rules-based AI systems, a

comparison is required. As such, the subjects need to use both the AGP and another

46

system side-by-side and compare their observations of the agents’ behaviors against those

of the AI bots in the other system.

In order for the comparison to be meaningful, several experimental design goals

must be met. The environments must be as similar as possible so the range of

interactions and tactical situations is the same, but at the same time different enough that

play in one game does not introduce learning effects in the second. The physics and

animation detail should be of the same quality so that presentational differences in the

virtual environment do not detract from the comparison of broader behaviors. The

game’s range of controls should be similar so that the players’ ease in using the interface

does not affect their experience differently between the two games. The same subjects

should play both games so there is a direct comparison between them. The games should

be short enough that learning has a minimal affect on the player’s ability to change their

ability to function in the second system based on their knowledge of the first, but long

enough that they have a chance to interact fully with the system and the agents or AI

controlling the opposing force. Finally, the order in which the two games are played

should be mixed so that effects of the order played can be discerned during analysis.

7. Survey

The observed differences in behavior between the traditional AI and the agent

system must be subjectively assessed. Since the goal is ‘proper’ behavior rather than

‘optimal’ behavior, there is no objective method that can be used to gauge success.

Rather, each subject must decide how closely their perceptions of the soldiers’ behaviors

matches what they would consider appropriate. Then it is up to the experimenter to

correlate the subjective opinions of the individual subjects and their own knowledge and

experience.

One approach is to create a list including both useful questions about their

perception of the behaviors and misleading questions about other aspects of the game to

prevent any conscious or subconscious effort to aid (or hinder) the goals of the

experiment. Another is to ask pointed questions about the agent behaviors and

comparisons between them and those in the commercial product with the hope that the

subjects would respond with a greater depth of useful information. The experimenter

47

might even prime the subjects beforehand to look for and attempt to evoke a wider range

of tactical situations to push the limits of the AI. As suggested previously, though, the

knowledge of the goals of the experiment are likely to taint the subjects’ responses on the

surveys. Even with the best intentions, a subject might err one way or another in an

effort to fulfill the experimenter’s expectations for the thesis.

C. SUBJECT POOL

The choice of a subject pool is important for obvious reasons. If it is too narrow,

there is the risk of missing vital knowledge or skills that could evoke new and different

reactions. If it is too broad, then the number of factors affecting the evaluation could

easily outstrip the number of subjects, making analysis virtually impossible.

Two pools of subjects were available for this particular testing period. Each

deserves some specific discussion.

1. NPS Student Body

The student body of the Naval Postgraduate School is a clear candidate for

subjects. Nearly all students at the school are mid-grade and senior active duty military

personnel, ensuring that they have at least some experience with military matters. For

those who are not Army or Marine Corps infantry officers, however, this may not

appreciably increase their ability to evaluate infantry combat behavior. Additionally, this

group has the advantage of being located on campus, and would likely be highly

available.

2. High School AJROTC

The other possible subject pool was the Army Junior Reserve Officer Training

Corps (AJROTC) unit at the local high school. While the students have less experience

with military affairs outside of their weekly class, they do have interest in the subject

matter, which is important for promoting attention and focus on the evaluation. The

AJROTC unit was chosen primarily because they were available regularly and in large

groups due to their drill schedule, thus making it possible to work through many

individuals in a short period of time without extensive scheduling.

48

D. EXPERIMENT PROTOCOL

The purpose of the experiment was to establish that an agent system is at least

equivalent to traditional AI for producing believable, soldier- like behaviors in a FPS

game with a modern military setting. To this end, the experiment attempted to compare

two similar games in such a way as to make the differences in behavior as apparent as

possible.

The experiment was conducted on March 11th, 2002, with subjects drawn from

the Army JROTC unit at Seaside High School, Seaside, California. A total of 16 students

completed the experiment and filled out the survey form.

1. Preparation

First, an appropriate level was designed for the AGP, with a small number of AI-

controlled soldiers, a small structure, lots of natural and artificial cover, and open lines-

of-sight.

Return to Castle Wolfenstein was chosen to be the control case game. While it

is a fantasy game, it has the capability of being completely realistic, at least within the

constraints of World War II technology and uniforms. Additionally, it is military-

oriented, reducing the number of visual dissimilarities between it and the AGP. Basic

user interface and avatar actions and motions were similar enough between the games

that there was be no problem playing one game after another, especially with a

familiarization period before each game.

A similar level was generated for Castle Wolfenstein. Each program was loaded

on a computer, and both were transported to Seaside High School and installed in the

AJROTC administration office. This location was physically separate from the

classroom to create as much isolation as possible for the test subjects and prevent

interference with the other students.

2. Introduction

At the beginning of each trial, pairs of subjects were brought to an isolated area

containing the testing platforms. Each was given a short verbal brief on the testing

procedure and signed the appropriate human subject release forms. The students were

49

told that they were assisting with a thesis experiment to compare a commercial game to a

game under-development by the Naval Postgraduate School.

Once briefed, each of the subjects was sent to one of the computers, either the

control case or the test case. After completing one game, they switched places.

3. Control Case

The subjects were given a short introduction to the game. They were given a note

card with the standard keyboard commands and placed in an empty level to test out the

controls and become familiar with the interface. After two minutes of familiarization, the

actual test level was loaded and they played in it for eight minutes, under the observation

of the experimenter to answer any questions or deal with any software issues. The game

was restarted when the character died, ran out of ammunition, or killed all of their

opponents and ended the level. At the end of the test period, the simulation was stopped.

4. Test Case

The AGP software was started on an empty level to test the interface in the same

manner as given for the control case. After two minutes, the test level was loaded and

they were allowed to play for eight minutes, again under observation. The level was

reloaded any time the character died, ran out of ammunition, or completed the level. The

game was stopped at the end of the testing period.

5. Survey

After completing both games, the subjects were taken aside and given a survey

form (see Appendix B). They were allowed whatever time necessary to complete the

form, while the next subjects were starting the experiment. Subjects filled out the survey

form individually and anonymously. If the subjects had questions about the survey, they

were able to ask the experimenter, but no additional guidance was given. When the

survey was complete, the forms were returned to the experimenter and the subjects

returned to their class.

50

E. RESULTS

This section will discuss explicitly the contents of the survey filled out by the

subjects. Both the raw data and some reasonable associations will be pursued with an eye

towards their positive or negative consequences.

1. Demographics

Subjects were asked to several pieces of personal information to help the

experimenter identify trends and commonalities in the survey responses. The subjects

were asked for the age and gender, as well as the frequency with which they played FPS

computer games and the likelihood that they would consider a career in the army. These

questions were included to demonstrate that the subject pool represented the target

audience of the AGP. None of the factors polled were judged to have a definitive effect

on a given subject’s ability to assess the realism of the AI’s behaviors. FPS experience,

in particular, could be problematic since it could be interpreted as a positive or negative

factor. It would indicate a superior ability to operate the interface and perform in the

virtual environment, and therefore the ability to evoke and observe AI behaviors, but it

might also taint the ability to compare the behavior to reality instead of similar FPS

games. This experiment will not draw any conclusions from these factors, relying instead

on the ratings of the games by the population as a whole.

2. Assessment of the AI

After completing both games, each subject graded the realism of each game in

five categories, which are described on the survey form and in Table 5, below.

51

Category Description

Response Reactions to the player’s movement and actions; range of
sight and hearing; ability to track the character when out
of direct line of sight.

Appropriateness Choice of actions in response to the current situation;
good choice of tactical decisions based on available
information and physical condition.

Self-Preservation Behaviors Actions taken to evade, take cover, and avoid the player
when they need to.

Aggressive Behaviors Actions taken to track, pursue, and attack the player.

Other Behaviors Actions while wandering around, ignoring the player, or
unaware of the player.

Table 5. Survey Judgment Parameters

Subjects rated each category for each game, using discrete assessments of Totally

Unrealistic, Mostly Unrealistic, Moderately Realistic, Very Realistic, or Totally Realistic.

Because the marks for the two games were placed side-by-side on the survey form, the

subjects certainly marked them both in reference to their personal standard of realistic

behavior and against each other. Therefore, the mark given to the AGP is relevant by

itself as well as in comparison to the mark given to Return to Castle Wolfenstein .

3. General Results

Tables 6 through 11 below show the overall results of the survey in each of the

categories given above. “#” indicates the number of subjects giving a particular

response, and “%” indicates the percentage of the subject pool.

The subjects answered the same questions for both the AGP and Wolfenstein

soldier behaviors. However, since the purpose of this experiment was to constructively

compare the two, the raw results for Wolfenstein are unimportant except for how they

relate to the AGP’s results. Since the ratings are subjective, the statistics will only

summarize which game was considered more realistic in each category. More detailed

may be extracted from the survey results themselves, in Appendix B.

52

Age 15 16 17 18

4 5 4 3

% 25% 31% 25% 19%

Table 6. Subject Age Distribution

Gender Male Female

12 4

% 75% 25%

Table 7. Subject Gender Distribution

Gameplay
frequency

Never Once or
Twice

Monthly Weekly Daily

3 3 3 5 2

% 19% 19% 19% 31% 12%

Table 8. Subject FPS Gaming Frequency

Likelihood of
Army Career

No Unlikely Possible Likely Definitely ?*

0 3 4 6 2 1*

% 0% 19% 25% 38% 12% 6%

* one subject reported their interest as “?” instead of using one of the categories provided

Table 9. Subject Army Career Likelihood

53

 Rating

AGP AI
Category

Totally
Unrealistic

Mostly
Unrealistic

Moderately
Realistic

Very
Realistic

Totally
Realistic

Response 0

0%

1

6%

2

12%

9

56%

4

25%

Appropriateness 0

0%

1

6%

3

19%

7

44%

5

31%

Self-Preservation 0

0%

0

0%

4

25%

5

31%

7

44%

Aggressive 1

6%

1

6%

4

25%

4

25%

6

38%

Other 1

6%

1

6%

3

19%

10

63%

1

6%

Table 10. Subjective Ratings of AGP Realism

 Rating (compared to Wolfenstein)

AGP AI
Category

Worse Equal Better

Response 4

25%

3

19%

9

56%

Appropriateness 3

19%

9

56%

4

25%

Self-Preservation 1

6%

8

50%

7

44%

Aggressive 4

25%

6

38%

6

38%

Other 3

19%

8

50%

5

31%

Table 11. Relative Ratings of AGP Realism

54

Although a sample size of 16 is insufficient for any rigorous statistical purposes,

there are a number of trends which appear positive. In absolute terms, the AI performed

well; an average of 72% of the subjects found the AI to be Very Realistic or Totally

Realistic overall. However, this is based on unreferenced opinion, and is therefore not

particularly meaningful. More important for the purposes of this experiment is that it

compared very well with a traditional AI technique when rated for realism. An average

of 39% of the subjects felt that it had more realistic behaviors than Return to

Wolfenstein , and only 19% felt that it was less realistic. The remaining 42% felt that

the behaviors were of comparable realism. Considering that the experiment is comparing

a production game with one that is still under development, parity should also be

considered success. Further development will only improve the abilities of the AGP AI.

The survey also had a space for subjects to make any additional comments they

wished. Most of the subjects did give additional information, although it rarely

mentioned the observed behavior of the soldiers. Nearly all of the comments were

positive mention of the AGP’s graphics, gameplay, and weapon effects modeling,

although there were some comments on physics irregularities and other observed bugs.

Several subjects also made positive comments about the test case game. There were two

AI-relevant comments: first, that the AI soldiers ran away too often, and second, that it

seemed especially realistic when an AI soldier ran up to check the player’s body after

they had been shot. These comments suggest further avenues for improvement and

analysis for the AI as well as the AGP as a whole.

F. CONCLUSION

Although the results of this experiment cannot be considered proof in any

statistical sense, they do show some trends. On the whole, the subjects considered the

AGP AI code to be at least equivalent to that of a production FPS game in producing

realistic soldier behavior. As such, the code can cautiously be considered to have

achieved its goals, at least at a basic level. The results of the experiment also suggest

likely avenues for improvement to the system. For example, the subjects considered the

soldiers’ incidental behaviors (described as “Other” above) to be the least appropriate,

55

only averaging halfway between Somewhat Realistic and Mostly Realistic. This suggests

that soldiers who do nothing but attack, defend, and run away are less realistic than those

who wander, converse, look around, and engage in similar actions that are not directed at

a combat-oriented goal.

Similarly, the comparative ratings indicate which areas of the code are more or

less in need of further development and tweaking. For example, 44% of the subjects

considered the self-preservation behaviors to be more realistic than the test game, as

opposed to only 6% who thought they were less realistic. This suggests the weighting

scheme and actions for GoalSurvive are reasonable, or at least pointed in the right

direction. On the other side, only 25% of the subjects thought the AGP soldiers chose

more appropriate actions, and 19% thought they chose less appropriate actions. This

should lead to further tweaking of the InfoSource, MentalModel, and

GoalDecider code to improve the fidelity of the information transfer, inference, and

decision-making.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

VI. CONCLUSIONS AND FUTURE WORK

A. INTRODUCTION

This thesis has demonstrated that an agent-based system can effectively simulate

soldier behaviors in a dynamic 3D virtual environment as typified by an FPS game.

Producing this realism required a number of innovations in FPS AI control, including

imperfect perception, mental modeling, an agent-based goal decision process, and a series

of informational feedback loops to allow the system to respond to a changing

environment. Furthermore, testing suggests that an agent-based approach to modeling

soldier behavior is superior to traditional rules-based AI in many ways.

B. INFORMATION FLOW

Realistic behavior depends on realistic modeling of the means for gathering and

storing information about the environment. Although the perception implementation

used the default Unreal events to determine when an entity was seen, modifying that

Boolean event into a more fluid concept of infoLevel allowed the soldiers to slowly

increase their knowledge and change their behaviors as more information became

available. Also, the possibility of spoofing leads to the possibility of making poor tactical

decisions, which is a desirable for representing how many decisions are actually made in

combat and other stressful situations.

The MentalModel’s slow degradation of infoLevels gives the soldiers the

ability to make inferences about the location and properties of the other soldiers, since

they will continue to “know” about them even after they have left the perceptual field.

While this may eventually produce unrealistic results, it bypasses the extremely difficult

problem of making actual inferences based on perceptual data, which could be a thesis

unto itself.

C. DECISION METHODS

The heart of an agent system is the goal decision engine. This implementation

follows the broad design of an agent system, using a number of competing goals each

being compared with an heuristic weighting function to determine which is the most

applicable. What it is missing is a feedback loop to alter the goal weights based on the

58

outcome of their actions. This feature is used in many agent systems to allow an entity

to optimize its behavior and adapt to a changing environment over time. However, since

a poorly chosen Goal or Action would typically result in death in the dangerous AGP

environment, this adaptation was not deemed to be worthwhile. Even under the best

circumstances, agents that learned to improve themselves would be lost when a given

game level ended. Therefore, adjustments of the goal weighting heuristics were done by

the designer rather than by the agent system itself. Lengthy testing seems to have

produced reasonable goal-weighting schemes for those that are currently implemented.

D. FUTURE WORK

As with any thesis, the scope of the work to be accomplished narrowed

dramatically over the course of the code development and writing. Many features and

elements of the initial conception have necessarily been delayed in order to present a

complete, tested, and fully functional code base. The following sections describe some of

these avenues for future work, as well as some thoughts on implementation and the

benefits they might impart to the AGP.

1. Testing

There are many ways in which the code could be tested beyond the limited trial

noted in Chapter V. Since one of the goals of agent-oriented programming is to increase

the intuitive nature of the code, it would be significant to survey code developers after

significant work with both traditional AI and this agent system to determine whether this

goal has been met. If not, further work or restructuring of the code might be required to

improve the system’s usefulness to future AGP developers.

Additionally, further testing of the code itself could be useful. Separating the four

components and implementing them one at a time and in all combinations could

demonstrate which modules are the most significant for producing realistic behavior.

Based on the results of such an experiment, the designers could focus on improving the

performance and fidelity of the most significant modules, resulting in an overall savings

in time and effort.

59

2. Code Optimization

All of the AGP AI code is written in UnrealScript , as described in Chapter IV.

UnrealScript was chosen because it provided an intuitive way to develop the structure

of the AI and made it simpler to organize the code modules for the system. The product

of this choice is a functional proof-of-concept, but the relative slowness of script

interpretation will eventually cause processor overload, especially as the number of

soldiers, size of game environment, and length of mission all increase. Many of the

functions and classes discussed in Chapter IV could be made native, moving their

implementation into C++. The speed advantages of compiled versus interpreted code

would greatly extend the maximum game complexity permitted.

This would require large amounts of code be rewritten, since the most likely

candidates (MentalModel and Contact) are fairly lengthy. Nevertheless, the

structure of C++ and UnrealScript are reasonably similar, so translation from one

format to another would be tedious but not difficult. Furthermore, because of the

flexibility of C++ the code could be optimized in ways not possible in UnrealScript in

addition to receiving the advantages of being compiled.

Such efforts would benefit from testing with increasingly complex levels,

possibly populating them entirely with AI-controlled entities. This could reveal the

relationship between the numbers of various game environment constructs and the overall

speed of the simulation, establishing an upper bound on the complexity allowed. This

could be of great value to the design of future environments with the AGP.

3. AI-Sensitive Objects and Locations

Currently, only AGP_Pawns and AGP_Objectives have functional AI_Stats

and can therefore be recognized and stored in the MentalModel as Contacts. While

important, there are many other aspects of the environment that would be useful to the

AI. Since soldiers currently are unable to perceive anything without an AI_Stats, a

greater diversity of AI-sensitive objects would certainly lead to more realistic behavior.

For example, a mission focused on defending a vital bridge from the enemy would

require the enemy AI to know of the bridge in advance and recognize its vulnerability to

certain weapons, all of which would be encoded in its AI_Stats.

60

Instantiating an AI_Stats in chosen classes of objects would be very simple.

New classes of objects in the environment might require new Goals and Actions to

deal with them, or modifications to existing Goals and Actions (especially their

evaluate functions). Thorough testing would show the degree to which the new

responses changed the overall soldier behavior, and whether this improved or degraded

its realism.

4. Class GoalOrders

Soldiers all begin with a set of instinctive goals and the overall mission goals in a

given game environment. Additionally, all soldie rs have an equal and independent means

for deciding on their actions in their own personal situation. Fire team leaders and squad

leaders are only special in that their fire team or squad explicitly protects them.

What may be useful is for soldier leaders (already distinct from followers in the

code) to have an additional range of Goals available to them for the purpose of directing

the soldiers under their command. These Goals would be constructed almost like those

already in the system, but would not cause any direct actions when executed. Instead,

they would temporarily add a new Goal to the GoalDecider of each subordinate

soldier. Until the leader rescinded this Goal or gave a new one, it would be evaluated

along with the rest of the Goals on an equal basis, thus temporarily expanding the

soldiers’ range of possible behaviors.

Such Goals would also benefit from an heuristic to determine the number and

quality of troops required for successful accomplishment. Then, the leader could pass the

order along to the desired number of troops (if less than the total size of his command)

and leave the rest to accomplish some other goal or act instinctively. This heuristic could

also benefit from a feedback mechanism whereby the leader could perceive how effective

his force allocation was at completing the missions, moving troops from one job to

another as they became more or less difficult or dangerous.

5. Aggregation and Disaggregation

A natural extension of giving different orders to two or more parts of a command

would be allowing soldiers to break off of one MentalModel and form their own. This

could be valuable for scouting missions, allowing single soldiers or small groups to travel

61

away from their leader, establish new Contacts, and return to the parent unit to

recombine and share their information.

Once the problem of choosing when to disaggregate is solved (as discussed in the

previous section), it is relatively straightforward to actually implement it. As the soldiers

physically separate from their parent unit, the leader’s MentalModel would be copied

and attached to the newly-chosen leader of the disaggregated unit; concurrently, the

soldiers staying behind, already represented as “perfect” Contacts in the shared

MentalModel, would be degraded to normal Contacts as the detachment moved

away and began to “forget” where their fellow soldiers were deployed. From then on, the

two would be distinct and not share information, so testing would be required to

determine the appropriate conditions for actually breaking up the MentalModel.

Upon their return to the parent unit, the two groups and their MentalModels

could easily be rejoined. Administratively, all of the detached soldiers would return to be

subordinates of the overall leader; the leader created for the detachment would lose his

special status and become and ordinary soldier again. The newly combined

MentalModel would have all of the Contacts contained in both of those being

aggregated, choosing the best infoLevel available. Further work could allow less

correct information to override more correct information, as the data is conditioned both

for correctness (as with infoLevel) and the holder’s confidence in that data.

Some difficulties would have to be overcome. The designer would have to decide

whether detachments from two different fire teams could aggregate in this fashion to

share information. Although more complicated, it may be necessary to produce realistic

behaviors in small, cooperating groups from different commands.

The designer would also have to address the subject of inadvertent disaggregation.

If a member of the group is unable to stay in physical proximity to his squad mates (due

to injuries or blocking terrain, for example), his AI should force him to disaggregate until

he can find his way back.

62

6. Psychology

In the currently implementation, all soldiers are copies of each other. Aside from

some randomness in the generation of their default psychology (included in the Unreal

system but not currently used by the AGP), all soldiers will tend to act in the same way

under the same conditions. Although this is desirable to a certain extent, it would

probably assist realism if some soldiers were more or less brave, aggressive, defensive, or

lazy than the norm. These psychological factors could be easily integrated into the Goal

or Action evaluation functions, modifying the chances that trait-appropriate Goals

would be chosen. For example he bravery trait might influence GoalSurvive

(negatively) and GoalAttrit (positively), whereas a laziness trait might increase the

weight of all evaluations of ActionIdle, regardless of the Goal it was associated

with.

Testing would be required to determine a “safe” range for each trait, so when

soldiers are generated they do not have unrealistically high or low modifiers to their

Goal evaluations. A soldier with a bravery of 0.0 and a laziness of 1.0 would

immediately stand out because of their tendency to stand still whenever threatened; this

might be useful for representing civilians but would be inappropriate for well-trained

soldiers.

7. Friendly AI

The code currently supports soldiers from U.S. forces, generic opposing forces

(OpFor), and generic neutral forces, as well as non-combatants. However, there has been

no testing of levels populated with AI soldiers from more than one side. Furthermore,

only enemy soldiers have been given AI for the thesis experiment. This choice was

natural, since OpFor don’t have to share information with a human player. Thus, all

information can be passed through function calls and the shared MentalModel without

needing a physical or animation model of information transfer.

In order to integrate a human player into a squad of AI-controlled soldiers would

require a number of modifications to the existing code. First, since the player is not part

of the soldiers’ MentalModel, the designer would have to devise a scheme for

graphically (or audibly) presenting Contact information and passing it on the player in

63

an intuitive and useable fashion. Since players already have a shortage of available

screen space, such information might be better displayed through icons or special shading

and lighting in the screen depiction of the environment. However, such unnatural

additions to the visual field would likely detract from the player’s sense of immersion and

might not even be useful as a decision aid if the MentalModel grows too large and

cumbersome.

Secondly, the human player would have to have some way to determine the

Goals of his squad mates, especially those of his squad leader. A player could easily

become confused or separated from his squad without some idea of what they are doing

and where they are going. In general, these Goals could be represented with graphics or

sounds. Unrealistic graphics degrade the visual fidelity of the game, as discussed above.

Sounds, especially speech, are much more appropriate to this sort of information.

However, in order to sound realistic the AI would need at least one sound, word or phrase

to play for each Goal available. This would increase the design overhead because it

requires specialized code, hardware, and personnel.

Finally, all friendly AI would need some way to deal with the player. A number

of the utility functions in Contact require knowledge of the target’s current Goal.

Although this can be directly perceived between AI soldiers by simple function calls, the

AI has no way to extract a Goal from a human player. The compromise currently in the

code is to rate human players as the maximum threat possible at all times. Overcoming

this shortfall would require a way to evaluate the player’s actions to determine their

current Goal in terms of the Goals known to the AI. This might be as simple as

sampling direction of movement and weapon discharge, but not likely. Because each

Action can be called by an arbitrary number of Goals, it becomes ambiguous what

Goal motivated a particular Action. Even at that, the process would almost certainly

generate errors, since human behavior is much more continuous and dynamic than that of

an AI with discrete and countable Goals and Actions. The field of “mind reading” to

determine motivations is still a topic of much research in human psychology (Baron-

Cohen, 1995); teaching an agent to do something similar, even in a narrowly scoped

domain like the AGP, would be a daunting task.

64

E. CONCLUSION

Significant room is left to improve, expand, and optimize the AI code for the

AGP. Nevertheless, the system as presented is a functional behavior generator for

members of small groups of loosely-joined, self-motivated individuals in the virtual

environment. It demonstrates that the finite state machine implementation of a traditional

game AI is not the only alternative when attempting to generate humanlike behaviors.

65

APPENDIX A

A. INTRODUCTION

The source code involved in the AGP AI module is lengthy and divided between

numerous files in several projects. Including it here in a meaningful form would have

been nearly impossible, especially since it is highly dependent on the underlying Unreal

code which is proprietary and therefore not subject to public release.

Nevertheless, portions of the code generated for this thesis are publicly available

through the MOVES Institute. Please contact the AGP Project Manager, Dr. Michael

Capps at capps@armygame.com or capps@nps.navy.mil.

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

APPENDIX B

A. INTRODUCTION

This appendix shows the forms used for the experiment in Chapter V and the

explicit results of the survey. It is organized as follows:

• Participant Consent Form

• Minimal Risk Consent Statement

• Privacy Act Statement

• Warfare Game Realism Survey Questionnaire

• Summary of Survey Results

68

PARTICIPANT CONSENT FORM

1. Introduction. You are invited to participate in an experiment to compare a commercial
computer game with a new game under development at the Naval Postgraduate School. You
will play a scenario in the game Return to Castle Wolfenstein and one in the developing
game, and compare the two in a short survey.

2. Background Information. Data is being collected by the Naval Postgraduate School’s

Modeling, Virtual Environments and Simulations department to provide feedback for
behavioral and artificial intelligence design in dynamic virtual environments.

3. Procedures. If you agree to participate in this study, the researcher will explain all required

tasks in detail. You will use the mouse and direction arrows to play a scenario in each of the
games. The intent is for you to play the game to the best of your ability. The entire experiment
will take approximately 25 minutes.

4. Risks and Benefits. The research presents the same risk as using a computer. If this is a

problem, please inform the researcher before beginning. The benefits to the participants will be
to contribute to current research in advancing behavioral design in dynamic virtual
environments.

5. Compensation. No tangible reward will be given. If desired, a copy of the results will be

available to you at the conclusion of the experiment.

6. Confidentiality. The records of this study will be kept confidential. No information will be

publicly accessible which could identify you as a participant.

7. Voluntary Nature of the Study. If you agree to participate, you are free to withdraw from the

study at any time without prejudice. You will be provided a copy of this form for your records.

8. Points of Contact. If you have any further questions or comments after the completion of the
study, you may contact the research supervisor, LT David Back, (831) 656-3710,
dnback@nps.navy.mil.

9. Statement of Consent. I have read the above information. I have asked all questions and have

had my questions answered. I agree to participate in this study.

--- ---------------------------
Participant’s Signature Date

--- ---------------------------
Researcher’s Signature Date

69

MINIMAL RISK CONSENT STATEMENT

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93943
MINIMAL RISK CONSENT STATEMENT

Participant:

VOLUNTARY CONSENT TO BE A RESEARCH PARTICIPANT IN: AGENT-
BASED SOLDIER BEHAVIORS IN DYNAMIC VIRTUAL ENVIRONMENTS.

1. I have read, understand and been provided "Information for Participants" that provides the

details of the below acknowledgments.

2. I understand that this project involves research. An explanation of the purposes of the
research, a description of procedures to be used, identification of experimental procedures,
and the extended duration of my participation have been provided to me.

3. I understand that this project does not involve more than minimal risk. I have been informed
of any reasonably foreseeable risks or discomforts to me.

4. I have been informed of any benefits to me or to others that may reasonably be expected from
the research.

5. I have signed a statement describing the extent to which confidentiality of records identifying
me will be maintained.

6. I have been informed of any compensation and/or medical treatments available if injury
occurs and is so, what they consist of, or where further information may be obtained.

7. I understand that my participation in this project is voluntary, and refusal to participate will
involve no penalty or loss of benefits to which I am otherwise entitled. I also understand that
I may discontinue participation at any time without penalty or loss of benefits to which I am
otherwise entitled.

8. I understand that the individual to contact should I need answers to pertinent questions about
the research is Dr. Michael Capps, Principal Investigator, and about my rights as a research
participant or concerning a research related injury is the Modeling Virtual Environments and
Simulation Chairman. A full and responsive discussion of the elements of this project and
my consent has taken place.

______________________________________ _________________________________
Signature of Principal Investigator Date Signature of Volunteer Date

Signature of Witness Date

70

PRIVACY ACT STATMENT

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CA 93943
PRIVACY ACT STATEMENT

1. Authority: Naval Instruction

2. Purpose: DETERMINE FIDELITY OF AGENT-BASED SOLDIER SIMULATION

IN DYNAMIC VIRTUAL ENVIRONMENT.

3. Use: Survey data will be used for statistical analysis by the Departments of the Navy

and Defense, and other U.S. Government agencies, provided this use is compatible
with the purpose for which the information was collected. The Naval Postgraduate
School in accordance with the provisions of the Freedom of Information Act may
grant use of the information to legitimate non-government agencies or individuals.

4. Disclosure/Confidentiality:

a. I have been assured that my privacy will be safeguarded. I will be assigned a
control or code number, which thereafter will be the only identifying entry on
any of the research records. The Principal Investigator will maintain the cross-
reference between name and control number. It will be decoded only when
beneficial to me or if some circumstances, which are not apparent at this time,
would make it clear that decoding would enhance the value of the research data.
In all cases, the provisions of the Privacy Act Statement will be honored.

b. I understand that a record of the information contained in this Consent Statement
or derived from the experiment described herein will be retained permanently at
the Naval Postgraduate School or by higher authority. I voluntarily agree to its
disclosure to agencies or individuals indicated in paragraph 3 and I have been
informed that failure to agree to such disclosure may negate the purpose for
which the experiment was conducted.

c. I also understand that disclosure of the requested information, including my

Social Security Number, is voluntary.

__
Signature of Volunteer Name, Grade/Rank (if applicable) DOB SSN Date

Signature of Witness Date

71

Warfare Game

Realism Survey Questionnaire

I. Background Information:

Age: ________
Gender (M/F): ________

For each of the following questions, circle the category that describes you best:

How often do you play First-Person-Shooter style computer games (Doom, Unreal, Quake, etc)?
Never Once or Twice Monthly Weekly Daily

Are you planning on joining the U.S. Army at some point in your life?
No Unlikely Possibly Likely Definitely

II. Game Survey

Which game did you play first (circle one)?

Return to Castle Wolfenstein Development Game

Rate how realistic you though each of the games was in the categories below. ‘Realistic’ is subjective, but
should rate how you compare what you see in the game with what you would expect to see happen in real
life in a similar situation. Use the following marks to indicate your answers:

Rating Totally
unrealistic

Mostly
unrealistic

Moderately
realistic

Very realistic Totally
realistic

Mark - - - 0 + ++

Category Examples Wolfenstein Dev
Responses Reactions to the player’s movements and actions;

range of sight and hearing; ability to track the
character when out of direct line of sight.

Appropriateness Choice of actions in response to the current
situation; good choice of tactical decisions based
on available information and physical condition

Self-Preservation
Behaviors

Actions take to evade, take cover, and avoid the
player when they need to.

Aggressive
Behaviors

Actions taken to track, pursue, and attack the
player.

Other Behaviors Actions while wandering around, ignoring the
player, or unaware of the player.

Did you notice any behaviors in either game which stood out as particularly realistic or unrealistic? If so,
please describe it briefly below:

72

 Subject Number

Demographics 1 2 3 4 5 6 7 8
Age 18 18 17 17 17 16 15 15

Gender F F M F M M M M
FPS Gaming Never Never Once Never Weekly Weekly Weekly Monthly
Army Career Unlikely Unlikely ? Likely Likely Possibly Likely Possibly
First Played Wolf AGP Wolf AGP Wolf AGP Wolf AGP

Wolfenstein
Response + + + 0 0 - 0 +

Appropriate ++ + ++ + 0 - + +
Self-Pres + + ++ + - 0 + +

Aggressive - - + ++ ++ + + 0 0
Other - - + ++ + ++ 0 0 +

AGP
Response + + 0 - + + + ++

Appropriate ++ + - + 0 ++ + 0
Self-Pres + + 0 ++ ++ ++ ++ +

Aggressive - - + 0 + 0 ++ ++ +
Other - - 0 + + + + + +

 Subject Number
Demographics 9 10 11 12 13 14 15 16

Age 17 15 15 16 16 16 16 18
Gender M M M F M M M M

FPS Gaming Once Monthly Daily Once Monthly Daily Weekly Weekly
Army Career Likely Possibly Definite Likely No Likely Possibly Definite
First Played Wolf AGP Wolf AGP Wolf AGP Wolf AGP

Wolfenstein
Response + 0 0 ++ + + + -

Appropriate ++ 0 + ++ 0 + + 0
Self-Pres 0 0 0 + + + 0 0

Aggressive + + - ++ + ++ 0 0
Other - 0 + + + 0 + -

AGP
Response + + ++ + ++ ++ 0 +

Appropriate + 0 ++ ++ ++ + + +
Self-Pres 0 ++ ++ + ++ + 0 0

Aggressive ++ ++ - ++ ++ 0 0 0
Other - + + + ++ 0 + 0

Table 12. Realism Survey Results

73

LIST OF REFERENCES

Adobbati, R. and others, (2001), GameBots: A 3D Virtual World Testbed for Multi-Agent
Research, Proceedings of the 2nd Workshop on Infrastructure for Agents, MAS, and
Scalable MAS, ACM Press, New York, 2001, pp 47-52.

Baron-Cohen, S. (1995). Mindblindness. MIT Press, 1995.

Calder, R.B., and others, (1993), ModSAF Behavior Simulation and Control.
Proceedings of the Second Conference on Computer Generated Forces and Behavioral
Representation, STRICOM-DMSO, July 1993.

Denny, C.R. (2001) Combat XXI, [http://tradoc.monroe.army.mil/dcssa/XXI.htm]

Foster, J. (2002), Close Combat Tactical Trainer XXI,

[http://stricom.army.mil/PRODUCTS/CCTT_XXI/]

Funge, J. (1999), AI for Computer Games and Animation: A Cognitive Modeling
Approach, AK Peters, Ltd, 1999.

Ilachinski, A. (1997). Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An
Artificial-Life Approach to Land Combat (U), Center for Naval Analysis Research
Memorandum CRM 97-61.10, August 1997, Unclassified.

Ilachinski, A. (1999), Toward a Science of Experimental Complexity: An Artificial Life
Approach to Modeling Warfare, Presented at 5th Experimental Chaos Conference,
Orlando, Florida, 28 June 1999.

Jones, R.M., and others, (1999). Automated Intelligent Pilots for Combat Flight
Simulation, AI Magazine, 20(1), 27-42

Laird, J.E. (2000). It Knows What You’re Going to Do: Adding Anticipation to a
Quakebot, AAAI 2000 Spring Symposium Series: Artificial Intelligence and Interactive
Entertainment, March 2000: AAAI Technical Report SS00-02

Ramsey, B. (2002) Janus Main Page, [http://www-leav.army.mil/nsc/famsim/janus/]

74

Stone, P. and Veloso, M. (2000). Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3), 2000.

Stone, P. (2000). Layered Learning in Multiagent Systems: A Winning Approach to
Robotic Soccer. MIT Press, 2000.

Taylor, J.G. (1980), Lanchester-Type Models of Warfare, Technical Report, U.S. Naval
Postgraduate School, Monterey CA, 1980.

75

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

Professor Michael Zyda
Code MOVES
Naval Postgraduate School

 Monterey, CA

Research Assistant Professor Michael Capps
Code CS/Cm
Naval Postgraduate School

 Monterey, CA

Research Professor John Hiles

Code MOVES
Naval Postgraduate School
Monterey, CA

LT David Back, USN
Department Head Course, class 169
Surface Warfare Officers School
Newport, RI

Christian Buhl

Code MOVES
Naval Postgraduate School

 Monterey, CA

